Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(10): 2539-2542, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186702

RESUMO

Heat accumulation prevents semiconductor lasers from operating at their full potential. This can be addressed through heterogeneous integration of a III-V laser stack onto non-native substrate materials with high thermal conductivity. Here, we demonstrate III-V quantum dot lasers heterogeneously integrated on silicon carbide (SiC) substrates with high temperature stability. A large T0 of 221 K with a relatively temperature-insensitive operation occurs near room temperature, while lasing is sustained up to 105°C. The SiC platform presents a unique and ideal candidate for realizing monolithic integration of optoelectronics, quantum, and nonlinear photonics.

2.
Light Sci Appl ; 11(1): 299, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36229447

RESUMO

Monolithic integration of quantum dot (QD) gain materials onto Si photonic platforms via direct epitaxial growth is a promising solution for on-chip light sources. Recent developments have demonstrated superior device reliability in blanket hetero-epitaxy of III-V devices on Si at elevated temperatures. Yet, thick, defect management epi designs prevent vertical light coupling from the gain region to the Si-on-Insulator waveguides. Here, we demonstrate the first electrically pumped QD lasers grown by molecular beam epitaxy on a 300 mm patterned (001) Si wafer with a butt-coupled configuration. Unique growth and fabrication challenges imposed by the template architecture have been resolved, contributing to continuous wave lasing to 60 °C and a maximum double-side output power of 126.6 mW at 20 °C with a double-side wall-plug efficiency of 8.6%. The potential for robust on-chip laser operation and efficient low-loss light coupling to Si photonic circuits makes this heteroepitaxial integration platform on Si promising for scalable and low-cost mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...